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Abstract

An approximate method for calculating the noise generated by a

turbulent flow within a semi-infinite duct of arbitrary cross section

is developed. It is based on a previously derived high-frequency so-

lution to Lilley's equation, which describes the sound propagation in

a transversely-sheared mean flow. The source term is simplified by

assuming the turbulence to be axisymmetric about the mean flow

direction. Numerical results are presented for the special case of a

ring source in a circular duct with an axisymmetric mean flow. They

show that the internally generated noise is suppressed at sufficiently

large upstream angles in a hard walled duct, and that acoustic liners

can significantly reduce the sound radiated in both the upstream and

downstream regions, depending upon the source location and Mach

number of the flow.

1 Introduction

Considerable effort has been invested in developing a new generation of su-

personic transports. One of the primary requirements was that the aircraft

be quiet enough to meet or even exceed existing noise regulations, and it was
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decided that a mixer-ejector nozzle concept would be used to help accom-

plish this objective. The idea was that a significant amount of the mixing

noise would be generated internally within the nozzle, and could therefore

be considerably reduced by using suitable acoustic liner designs. Data from

recent tests using a prototype mixer-ejector show that the peak internal tur-

bulence level is more than twice the external level. It is therefore important

to develop prediction methods for this internally generated noise. A general

theory based on Lighthill's equation was developed by Goldstein and Rosen-

baum [1]. Dill, Oyediran and Krejsa [2] extended this analysis to account for

mean-flow refraction effects. However, both theories involve the solution of a

complicated Weiner-Hopf problem, which can only be explicitly worked out

for a slug ( or 'top hat') mean velocity profile.

The experimental data suggest that the internal noise is of much higher

frequency than the externally generated noise, in addition to being much

more sensitive to nozzle geometry. Moreover, many of the most successful

noise prediction schemes ( e.g. the MGB code) are based on high-frequency

Lilley's-equation solutions. The present study is therefore directed toward

developing a high-frequency Lilley's-equation solution that can be used to

predict the internally generated noise. We suppose that the sound is gener-



ated by a superposition of statistically independent and acoustically compact,

convecting-point quadruples and derive a formula for the high-frequency

acoustic radiation generated by such sources when they are located within

a semi-infinite, parallel-walled nozzle. In fact, we suppose that the mean

flow is completely parallel, but allow the cross-sectional shape and veloc-

ity profile to be arbitrary (as shown in Figure la), in order to account for

nozzle-geometry effects. The only variation in the streamwise direction is

due to the boundary condition change at the nozzle exit, which is allowed to

have an arbitrary shape. Finally, an arbitrary (frequency dependent) acous-

tic impedance boundary condition is imposed at the nozzle walls, in order to

model an acoustically treated surface. The resulting solutions can then be

superimposed to calculate the sound generated by an actual turbulent flow

within a nozzle. The analysis can be used to guide the design of acoustic

liners that may be required to absorb the noise radiated in specific directions

or to design nozzle exit shapes that reduce the noise radiation below the

flight path.

Goldstein [3] developed a formula (equation (5.9) of that reference) for the

high-frequency sound radiation from a convecting-point quadruple source in

an arbitrary, transversely sheared mean flow. This result was later extended



by Durbin [4] to account for a general (not necessarily parallel) mean flow.

These formulas involve a ray-spreading factor that multiplies the product

of a source function-which describes the actual acoustic sources-with some

Doppler factors that account for the local source and mean flow convection

effects. The spreading factor accounts for the mean-flow variation along the

path of the radiated sound and can be calculated from geometric acoustics

or ray tracing.

The present paper shows that Goldstein's [3] formula still applies to the

internally-generated noise and that only the ray-tracing analysis which is

used to calculate the ray-spreading factor needs to be modified in order to

account for the effect of the nozzle walls. This is demonstrated in Section

2, where the notation is introduced and the Goldstein [3] and Durbin [4]

analyses are reviewed in some detail.

Three-dimensional ray tracing is fairly complex and somewhat difficult

to implement numerically, but it was shown in Ref. [3] that the three-

dimensional ray-tracing calculation could be reduced to a much simpler two-

dimensional one for the doubly-infinite jet flow considered in that paper. The

rays can then be found by solving a single second-order equation. In section

3 we show that this can also be done in the present problem. The results
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are applied to an actual turbulent flow in Section 4 and specialized to an

axisymmetric mean flow in a round duct with circular exit plane in Section

5, where some numerical results are also presented. Some conclusions and

recommendations for further work are given in Section 6.

2 Extension of Doubly Infinite Jet Solution

to Account for Finite Nozzle Geometry

For definiteness, we consider a unidirectional, transversely-sheared, parallel

mean flow

v = [V(xt), p = fi(xt), c = _(xt), p = constant, (1)

with velocity v, density p, speed of sound c, and pressure p, exiting from a

parallel-walled nozzle, as shown in Figure 1-a. The result which we obtain,

however, is much more general and applies to more complicated flow configu-

rations such as the one shown in Figure 1-b. Equation (1) is an exact solution

of the inviscid, non-heat-conducting equations of motion for these configura-

tions, x = {xl, z2, xs} denote Cartesian coordinates with xl aligned with the

direction of the mean flow, _ denotes the unit vector in this direction, and

xt = {x2, xs} denotes the transverse coordinate vector. The nozzle exit is



describedby an arbitrary, three-dimensionalcurveC, asshownin the figure.

The mean velocity U is assumed to go smoothly to zero at the generators of

the nozzle wall and to remain zero beyond that surface. The analysis does

not therefore account for forward flight effects, but can easily be extended to

do so.

Assuming that the ideal gas law applies, the linearized equation governing

the acoustic propagation on this flow is [6]

°r )£P ---- _ k _ V. _'2V v + 2_z2VU • V = F, (2)

where p now denotes the acoustic pressure fluctuation normalized by fi_2,

D 0 0
-- + U-_--, (3)

Dt Ot aXl

denotes the convective derivative, and t denotes the time. [' represents the

acoustic source distribution and is given by

D--V. f- 2_7U. Of
F = Dt Ox-'-_' (4)

when this quantity is produced by a fluctuating force fi per unit volume.

In the absence of temperature fluctuations, Lilley's equation is obtained by

replacing fi by the quadruple source distribution fi = _ where ui denotes
Oxj

the velocity fluctuation within the flow.



Sincethe problem is linear, and the secondterm in (4) is negligiblecom-

pared to the first in the high-frequencylimit, the solution for an arbitrary

force distribution fi can be obtained by superposition of solutions, say PC,

to

/_ (pae -i_¢) = D-D--_(x - x')e -i_'t, (5)
Dt

where w is the frequency, x' denotes the source position, and 3 is the Dirac

delta function.

2.1 Review of Durbin's high-frequency solution

By using matched asymptotic expansions, Durbin [4] showed that the solu-

tion to this problem is given by

pe = pc(xlx',w) = (1 - Ms,) _e iks, (6)

in the high-frequency limit

k _-__ (7)

where _'_ is the speed of sound in the region of zero mean flow,

M = U/O._, (8)



S denotesthe Eikenal, which satisfiesthe Eikenalequation

(1 - Ms_) 2 - _ I.I== o, (9)

and

s={s,,s2,sa}-VS. (10)

The solution to this first-order partial differential equation can be ob-

tained by the method of characteristics by calculating S along the rays x(r)

, which are determined by the ordinary differential equations

Xl=Sl 1- +-e= ,

X'i -- Si ]

Isi - _ o_"7

(11)

(12)

i=2,3, (13)

subject to the initial conditions at the source position x 8 that the initial ray

velocity is proportional to the initial ray direction, say {cos #, sin # cos A, sin # sin A},

i.e. that

5¢, = "/,{cos #, sin # cos A, sin # sin A}, (14)

where the dot denotes differentiation with respect to r, the subscript s de-

notes quantities evaluated at the source position x 8, and the proportionality
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constant% is given by

%-2 = (_.,/_)2 1- (Us sin. . (15)
\ Cs

As pointed out by Durbin [4], Eq. (15) without the subscript s, and with #

replace by the polar angle O, relates the ray speed to the ray direction at all

points along a ray.

The amplitude function ¢ is given by

1 ,/_7_.a sin. (16)
¢ = 4zrC-r:oo(1 - M, sl)V fisTJ '

where J denotes the Jacobian determinant

j= O(x,,x_2, x__3) (17)
0 '

with da = Idxl denoting the distance along the ray.

Once these equations are solved, the Eikenal can be found by integrating

the equation

S=s.±, (18)

and the velocity fluctuation ua, corresponding to the acoustic pressure per-

turbation PG, can be calculated from

U G = _.2sc_eikS/_oo. (19)
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The important thing to notice is that the derivation of these results is

completely independent of any boundary conditions that are imposed on the

surface E of the duct, and the termination curve C of the duct exit. The

latter gives rise to the so-called defracted radiation which (Pierce [7]) is of

higher order in frequency than the direct and reflected radiation and can

therefore legitimately be neglected in the high-frequency limit-though it can

certainly be important in the upstream direction.

2.2 Modification of solution to account for the duct

walls

The conditions at the surface of the duct are accounted for by imposing

boundary conditions on the solutions to the ray equations (11) to (13) at

the point where the rays reach the boundary to produce a reflected wave,

say {p+,u+}, corresponding to the incident wave, say {p_,u_}. (See, for

example, [7].)

The reflected wave is still given by equations (6) with (16), but multiplied

by a constant reflection coefficient, say 7a,.. The Eikenal S is obtained by

integrating (18) through the reflection.
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Thus, the pressureand velocity on the boundary E are given by

Pa = _ (1 + 7"_) eiks, (20)

and

C-2_
UG = -- (S_ + 7_S+) eiks (21)

(recall that U is assumed to be zero at _).

The usual impedance boundary condition for a locally-reacting surface

involves only the normal component of the velocity ua, and therefore only

the normal component of the propagation vector s. This condition is usually

expressed in terms of an impedance, say Z (which can, in general, be a

function of the frequency w,), as

Pa for x on E, (22)
Z = fi_2 u a • fi

where fi denotes the unit normal to E. Moreover, the normal component of

s changes sign, i.e.

s_.fi=-s+-fi forxonE. (23)

Substituting this along with (21) into (22) yields the following expression for

the reflection coefficient

R_r/+ 1
7-1' (24)
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where

=-(s_ (25)

where _ = Z/_oo_oo is a normalized impedance. Notice that Z -+ c_ and

7_ _ 1 for a hard wall.

On the other hand, the tangential component of s, namely sl, remains

unchanged by the reflection, and it therefore follows from (11) that

sl = constant, (26)

which is equal to the far-field value of this quantity for any ray that propa-

gates to infinity (which are the only ones we are interested in here). In this

region (where the mean flow is zero), the acoustic rays are straight lines and

are therefore given by

x = x' ÷ R (cos 0oo, singoo cos Coo,sin 0oo sin Coo), (27)

where R can be taken as the distance between the source point and the ob-

servation point, and 0oo and Coo denote the far-field polar and circumferential

angles, respectively, shown in Figure 1.

It therefore follows from Eqs. (11) to (13) and the Eikenal equation (18)

that/_ = 1, and that

sl = cos 0oo. (28)
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The Jacobiandeterminant (17) becomes

j= Rasin0 _ 0(O_,______)
o(u,_)

and it now follows from (12), (14), and (28) that

= - cos 0_ +
\_,,' J

(29)

(30)

Eliminating 7, between this and equation (15) shows that 0_ depends

only on #, and not X, and that

(_. ,_2 sinOoodO_

"/s3 [1\C'7/ = sin/_ -d/.t
(31)

Inserting this into (16) and using (29) shows that

I d)_ , (32)--+ 4rRe_ (1 --'M, cos Ooo)

where we have used the ideal gas law to obtain this result and put

m

- IXTq, (33)
i=l

where the gi denote the individual reflection coefficients for each of the m

reflections that the ray undergoes before leaving the duct. Also, it follows

from (13), (18) and (28) that

(34)s = (xl - xl") cos0= + S0(x,lx,').
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2.3 Application to moving point source

As indicated in the Introduction, the sound radiated by an actual turbulent

flow can be calculated in terms of the pressure field p generated by a su-

perposition of point quadrupole sources moving downstream with the mean

flow. We therefore consider the source distribution

o °5 (x- x,' -  uot) (35)
F - Dt Ox_Oxj

where Uc denotes the convection speed of the source whose strength is Qij.

The corresponding acoustic field can be calculated from the fixed source

solution PG by superposing Fourier components and using the Green's for-

mula ([3])

QiJ f f'__ f pa(xlY, W) e-i_('-',P- 2n-

0 2

Oxi'OxJ * e-'_"$(y -- x * - [Uct)dydrdw.

(36)

Integrating by parts to transfer the derivatives from the source term to the

Green's function, and carrying out the integrations with respect to yt and r

gives

P- 2zrU,

0 2

_pa(xlx',w)dxx'dw. (37)
cgxi" Ox i

For clarity, we begin with the case where only a single ray reaches the

observer. The result will then be corrected for multiple ray effects in a
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relatively obviousmanner. Inserting equations(6), (28) and (34) into (37),

and using the fact that (at lowest approximation) the partial derivatives

operateonly on the frequency-dependentterms in the exponent,weobtain

p = (1 - McosOoo) e-i_'t Qij
2rcUc / / ¢ei{W-_°'(x'°/u'-t'

02 , ir_t(:_,__,,)¢o_Ooo+Soldxl,dw"X v

Ozi'Ozj"
(38)

Then, carrying out the integration, first with respect to xx _ (to obtain a

(f-function), and then with respect to w, shows that

- (1 - M cos 0oo) aiajQi.i k_(be_oo(,__:oo, ooo)(_, ¢o_Ooo+So-eoot)
P = (1 - Mc cos 0oo)

(39)

where we have put Mc = Ucl_oo, ks = w,/5oo and

cos O_ - 1 OSo

a,= 1-MccosO_ ; ai= 1-M_--_osO_Oxi _' fori=2,3. (40)

Then it follows from equation (32) that

Ip12_ (4zrR)2c_ (1 .... ¢---- - M, cosOoo) (1- M¢cosOoo) 2
(41)

in the far field where M = 0, which, except for some minor notational

changes, and the inclusion of the reflection coefficient _, is the same as

equation (5.9) given in Ref. [3]. The normalized wall impedance, _', which

appears in this equation through the reflection coefficient, _ , must be eval-
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uated at the actual (or observation)frequency

co= _o,/(1 - Mc cos 0oo), (42)

and not the source frequen.cy ws.

It is convenient to allow the transverse orientation of the quadrupoles to

vary with source position. This amounts to changing the orientation of the

x s coordinate system or, equivalently, referencing the angle A to a different

angle, say Ao(X_). Then it follows from the results given in Ref. [3] that or2

and era are given explicitly by

-qs cos (A - Ao) -qs sin (A- A0) (43)
(z2= 1-MccosOo0 ; ira= 1-MccosOo0 '

where

i(1 - M cos 0o0) 2q - (_/_o0)------_ - cos 2 0o0. (44)

When multiple rays (which we individuate by a superscript in parenthe-

ses) reach the observer, the far-field pressure is given by the somewhat more

complicated formula

4 .

ks Q,ijQktDijkl (45)
Ip12-+ (4_R)2 e_ (1 - M, cos 0o0)2(1 - M, cos 0o0)2'

where * denotes the complex conjugate, and the dependence on the transverse
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sourcecoordinatesr,, ¢,, and the emission angle A enters through

Dijkt _ E
n,ra= l

ai (") aj ('_)o'k('n) al(m)7_('_)7_(_)* 0)_(m) I_?___e_( So_"_-So'_"),

(46)

where n denotes the number of rays reaching the observer.

3 Reduction of Order of Ray Equations

Goldstein [3] introduced the two-dimensional ray distance S defined by (see

equation (2.19) of that reference),

dxt
_- -- 1. (47)

It follows from equations (14), (15) (generalized to arbitrary position

along a ray), (44) and (28) that T is related to ,9 by

dS

d--'_= q" (48)

Equations (13) can then be combined to obtain the second-order system

d dxt

-_q"_ = Vtq, (49)

where Vt denotes the cross stream divergence. This is the same as equation

(2.23) of ref. [3], where it is shown, by introducing the polar coordinates

¢ = tan-_(x_/_), r = _/_ + _, (50)
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that it can be reduced to the single second-order equation

1 d r2q 0q

I de I 0¢'
(51)

where

I- r2+

which is to be solved subject to the initial conditions

(52)

dr

r=r, ; --=r, cot(A-¢,), at¢=¢_. (53)
de

Inserting equations (13) and (48) into the boundary condition (23), using

(50) and taking ¢ as the independent variable, shows that the appropriate

boundary condition for equation (51) is

_td __+ta_(¢-_)=_ -_--r-tan(¢-_) ,

fl = {cos_,sinfl}.

where we have put

for x on _,

(54)

(55)

This boundary condition must be imposed on all rays reaching the cylindrical

surface containing the duct wall whenever

Xl <_ x_(x2, x3), (56)
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where xl = x,,(x2, x3) is the equation for the termination curve C. xl can be

calculated as a function of ¢ along the ray by inserting (28), (48), (50), and

(52) into (13) to obtain

dx 1 I -

4 Application to Sound Radiated by Actual

Turbulent Flows

Equation (45) can be usedto calculate the power spectral density of a spec-

tral distribution of sources of band width Aw. by putting QijQ*kt equal to

t_ijktAw, . However, pressure spectra are measured per unit observation

frequency Aw

/_0) s

Aw = 1 -- Mc cos 0oo' (58)

(see Eq. (42)) and it therefore follows that the directivity of the spectra at

constant source frequency w, (due to a source at x s) is given by

1 ]:s4ffdijklDijkl IdAA----_]pl 2 _ (4_R)2_4 (l _ M, cosOo,.,)2(l_ M,:cosOoo ) -._ . (59)

This result can now be .used to calculate the sound emitted by an actual

turbulent flow by assuming that the turbulent eddies behave like compact
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sound sources,and using Lilley's equation to showthat the spectral source

strength _iikt is related to the fourth-order, two-point, time-delayedcorrela-

tion function of the turbulence

8Ris_l(x ,_, _')=" " "'" ' ' -"" ".ui.uj.Uk.Ul -- _ZiU j "Uk'tt I ,
(60)

in the usual way by

= e Rijkt(x , _, T)d_dT, (61)

where the single prime indicates that the quantity is evaluated at the po-

sition and time (xS',t), the double prime indicates the position and time

(x%t +-r),

= x'"- x s'- iUcr, (62)

and

denotes the mean position of the source.

Since the sound field is always produced by a distribution of sources rather

than by a single point source, the final result will involve an integral of Eq.

(59) (and consequently of Eq. (46)) over the transverse source coordinates rs

and ¢,. Then, since So('`) is a function of these coordinates, the contribution
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from the cross-couplingtermsin (46) will be smallerthan the contribution of

the m = n terms by a factor of (at least) w -1/u, which in a strict asymptotic

sense is negligible in the high-frequency limit. However, the zero-mean-flow

computations of Boyd, Kempton and Morfey [8] suggest that the asymptotic

convergence may be relatively slow for sources close to the wall (which result

in small values of So(")- S (m) in Eqn. (46)), and that the interference effects

may not be insignificant even at relatively high frequencies - particularly

at small angles to the downstream axis where the sound field in expected

to be maximal. However, the turbulent flows, which are of interest here,

will probably introduce significant random fluctuations in the phases of the

disturbances, which will tend to uncorrelate the pressure fluctuations corre-

sponding to different ray paths. We therefore feel that it is best to neglect

the interference effects, which amounts to replacing Eq. (46) with

Dijkt = fi _i(n)_j(nlo'k(n)O'l(n)] 7_(") 2 0h(n) (64)
.=1 0_oo "

Since the fourth-order correlation tensor is very difficult to measure ex-

perimentally, or even calculate numerically, it is usual to assume that the

turbulence is quasi-normal, and, consequently, that Rijkl can be expressed as
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the product of second-ordercorrelations([9], [10])

Rijkl = RikRjl W RitRjk. (65)

In order to simplify this further, Goldstein and Rosenbaum [11], Kerschen

[12], and, more recently, B_chara et hi. [13] and Khavaran [14], assumed that

the turbulence is axisymmetric about the direction of the mean flow. The

analysis given in Ref. [1] (see also [2]) then shows that

: i<,l' I f e-i'"i_od_dr -- 2(a/'3)2/re-"'" (0,.-Q.,)d_.d_

+ ' ' e Q,jd_dv,:,.,if -'_'- (66)

where we have dropped the superscript (n) on the ai, and

_)_ = 033 = R_ - RI_

053 = R].-R].

(67)

are symmetric in their indices.
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5 Application to Round Duct with Axisym-

metric Mean Flow

Goldstein [3] showed that Eqs. (51)-(53) can be solved analytically when

the mean flow is axisymmetric. A similar procedure can be used to obtain

an analytical solution to the present problem, but it is probably easier to

solve it numerically. However, it is important to notice that, in this case, the

resulting solution, whether obtained analytically or numerically, will depend

on ,_, ¢ and Cs (where ¢_ is the circumferential angle of the source point)

only in the combinations ¢-¢_ and )_- ¢_, since the coefficient q in Eq. (51)

is independent of ¢, i.e., ¢ appears only as an independent variable. This, in

particular, implies that _ - Cs is a function of ¢o_ - Cs, rs and 0_. Moreover,

calculations of the ray trajectories for sources located within the nozzle show

that )_ is a discontinuous, multi-valued function of ¢_, due to the sudden

change of boundary conditions at the nozzle lip. This is illustrated in figure

2, which is a plot of ¢_ vs. )_ for the indicated source location. Thus, even

though ¢_ is necessarily a single-valued function of A, the figure shows that

the converse is certainly not true. It follows that

n=l d¢_
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-.=1-_ f0_sin_(_(-,-_s)cosq(_,_,-_s)_(_'1_'[_(_'"'_,-_s)d_ /68/

,, 7_(,_) 2 dA == sin pAcos qA forp, q 0,1,2,

since, for a given rs and 0oo, 7_ depends on q_oo - q_s only through A - ff_.

The sum in Eq. (68) must be taken over all A(n) values corresponding to any

given value of 4_oo, in order to account for all of the rays reaching a given

observation point.

If we now choose the reference angle A0 in Eq. (43) to be equal to q_s,

the quadrupole sources will have the same orientation relative to the radial

direction for all if,, i.e. the quadrupole source distribution in Eq. (59) will be

axisymmetric when k_ijkt is independent of q_,. Then, since equations (43),

(44), (64), and (68) show that the entire _b_ dependence in (59) is of the form

(68), it follows that the sound field [p[ emitted by a ring of uncorrelated, equi-

strength quadrupole sources with radius r,, and the same orientation relative

to the radial direction, is independent of the circumferential observation angle

_b_, i.e. it is axisymmetric.

When 17_1 - 1 (i.e. for a hard-walled duct), it follows from equations (43),

(44), (66) and (68) that

0A(")
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÷ os.ooo/ /o (o,,÷Oo)

For isotropic turbulence #iS = 7Q0, and it follows from Eqns. (43) and

(44) that Eq. (69) is independent of 0oo when Ms = Me. This means that

the sound radiated by a ring source in a hard-walled duct is not only inde-

pendent of the mean velocity profile within the jet, but is also unaffected by

the presence of the duct when all rays reach the far field. Of course, this

result only applies when the phase cancelation between multiple rays can be

neglected. Also, since r,d¢, is the element of arc length, the total sound

radiated by the ring source will be directly proportional to the radius r,.

5.1 Numerical results

Results for the directivity patterns due to a ring source within a round

duct were computed for a constant mean speed of sound, _ _- coo, and mean

Mach number profiles of the form

--at b e--a

M(r) = M0 e -
1 --e-" ' (70)
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where M0 is the centerline Mach number and the parameters a and b are

used to control the profile shape.

The source terms in Eq. (66) were evaluated using the relations given by

Khavaran [14] for axisymmetric turbulence. The anisotropy is characterized

and L /L1, where and are the streamwiseby the two parameters 2 2

and transverse mean square turbulent velocities, respectively, and L1 and

L2 are the corresponding correlation lengths (see ref. [14]). Values for the

u2/u x = 0.6 and L2/L, = 0.5 were used in theanisotropy parameters of 2 2

calculations.

Figure 3 shows the results for the far-field directivity

V = zlpI= (4_R)_-4 c°° (71)
Aw k_n. '

vs. far-field polar angle, 0oo, for a ring source at rs = 0.75r0, za s = -2.0r0,

where r0 is the duct radius, and a centerline Mach number of 1.5 with

a = 0.1,b = 6, for a hard-walled duct and a soft-walled duct of various

impedances.

For sufficiently small far-field polar angles outside the zone of silence, all

rays emanating from the source reach the far field and, for the perfectly-

reflecting, hard-walled duct considered here, the duct has no effect on the

far-field sound. At far-field positions beginning in the upstream quadrant
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( i.e. 0oo > 7r/2 ), however, some of the rays become trapped within the

duct, causing the sound pressure levels to be reduced at these angles. The

hard-walled duct, therefore, only effects the sound field at sufficiently large

angles to the downstream axis which, in fact, lie in the upstream quadrant

as indicated in the figure. Since the number of rays reaching the far field

rapidly decreases as 0oo -_ n', there is a sharp drop in the far-field sound.

However, the soft-walled duct starts to effect the sound field as soon

as wall reflections begin. Since an increasing number of rays reflect (an

increasing number of times) off the wails as the polar angle increases there

is a substantial decrease in the far-field sound relative to the hard-wall case.

The wall impedances ( = (1,-1) and ( = (2,-1) are seen to reduce the

peak noise level by nearly 5 dB, relative to the hard wall case. The results

suggest that the magnitude and phase of the normalized wall impedance can

significantly effect the peak sound level, and a detailed parameter study to

find the optimal value should be carried out.

Figures 4 and 5 show the effect of the source position on the far-field

sound. The rays undergo fewer wall reflections when the source is closer to

the nozzle exit (Fig. 4), and the acoustic liner therefore provides less noise

suppression. When the source is closer to the duct centerline (Fig. 5), all
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rays exit the duct without reflecting off the wall when the far-field polar

angle is sufficiently small, and the acoustic liner has no effect on the sound

field. Wall reflections start to occur when the polar angle is increased, and

the liner reduces the far-field sound, but only by a relatively small amount -

again due to fewer wall reflections.

Figure 6 illustrates the effect of centerline Mach number on the liner

effectiveness. At the subsonic Mach number (M(0) -- 0.9) for which this

result was obtained, a wall impedance of _"= (1,-1) again reduces the peak

sound pressure level by about 5dB, but produces a much larger reduction

than the previous (supersonic) case at large upstream angles.

6 Conclusions and future work

It was shown that the high-frequency Lilley's-equation solution devel-

oped in Ref. [3] for a doubly-infinite, transversely-sheared mean flow also

applies to the noise generated internally within a nozzle, provided appropri-

ate boundary conditions are imposed on the ray trajectories at the surface

of the duct and a suitable wall impedance factor is included.

By assuming the turbulence to be axisymmetric about the mean flow di-
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rection, a simplified expression for the far-field sound radiated by a turbulent

flow within the nozzle was .derived.

The analysis was applied to the case of a round duct with an axisym-

metric mean flow, and it was shown that a hard-walled duct has no effect

on the far-field sound radiated at polar angles sufficiently close the duct axis

(but outside the zone of silence). The numerical results show that the duct

cuts off some of the rays for polar angles in the upstream quadrant, and that

acoustic liners can significantly reduce the far-field sound but their effective-

ness depends upon the wall impedance, source position and mean flow field.

The analysis can be used to carry out detailed parametric studies to find the

optimal wall impedance, acoustic source distributions, mean profile shape

and nozzle geometry for a given application.

The ray acoustics solution has the advantage of being applicable to nozzles

of any shape and any mean velocity profile (see Fig. 1). The high-speed

civil transport was expected to use a rectangular mixer-ejector nozzle with

a very complex mean velocity profile and acoustically treated walls. Future

work will evaluate the ray acoustics solution for this geometry and make

comparisons with some recent test data.

This paper only considers the sound produced by the first source term in

3O



Eq. (4) - the so-called 'self-noise' term. While this term is asymptotically

large compared with the second (or 'shear-noise') term in Eq. (4) in the

high- frequency limit, it may be necessary to include the latter in order to

obtain agreement with experimental results, particularly in the downstream

quadrant (see, for example, Khavaran [14]).

This paper also does not address the diffracted radiation produced by

acoustic rays striking the duct lip. It too is asymptotically small compared

with the direct and reflected sound (Pierce [7]), but can still be of significance

at the upstream polar angles, where most of the direct or reflected sound is

cut off by the duct. This is currently being investigated by Wundrow and

Goldstein [15], who plan to develop a computational algorithm incorporating

the diffraction effects into the present analysis.

The authors would like to thank Dr. James Bridges of NASA Glenn

Research Center for providing values of the wall impedance and Dr. Abbas

Khavaran of Dynacs Engineering Co. for information on the mixer-ejector
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Figure 2: Far-field cirumferential angle vs. initial cirumferential angle for Mach

number profile (70) with a = 0.1, b = 6, M(0) = 0.9 and source position rs =

0.75ro, zl 8 = -0.5r0, and 0oo = 31r/8.
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Figure 3: Far-field spectral directivity for M_h number profile (70) with a =

0.1,5 = 6, M(0) = 1.5, and source position r_ = 0.75to, z1' = -2.0r0 for

hard-wall duct (solid) and soft-wall duct with ( -- (1,-1) (dashed), (1/2,-1)
(dotted), (2,-1) (dot-dashed), (1,-2) (dot-dot_lashed).
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Figure 4: Far-field spectral directivity for Mach number profile (70) with a -
0.1, b = 6, M(0) - 1.5, and source position r, - 0.75r0, zl' = -0.Sro for hard-
wall duct (solid) and soft-wall duct with ( = (1,-1) (dashed).
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Figure 5: Far-field spectral directivity for Mach number profile (70) with a =
0.1, b = 6, M(0) = 1.5, and source position r, = 0.5r0, zl' = -0.5r0 for hard-

wall duct (solid) and soft-wall duct with _ = (1,-1) {dashed}.
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Figure 6: Far-field spectral directivity for Mach number profile (70) with a =

0.1, b = 6, M(O) = 0.9, and source position ro = 0.5r0, zl* = -2.0ro for hard-
wall duct (solid) and soft-wall duct with _ = (1,-1) (dashed).



List of Figure Captions

Figure - 1 (a)Flow configuration. (b) Example of more complex con-

figuration to which analysis applies.

Figure - 2 Far-field cirumferential angle vs. initial cirumferential angle

for Mach number profile (70) with a = 0.1,b = 6, M(0) = 0.9 and

source position rs = 0.75ro, xl s = -0.hro, and 0_ = 37r/8.

Figure- 3 Far-field spectral directivity for Mach number profile (70)

with a = 0.1,b = 6, M(0) = 1.5, and source position rs =

0.75ro, xl s = -2.0to for hard-wall duct (solid) and soft-wall duct

with ( = (1,-1)(dashed), (1/2,-1) (dotted), (2,-1)(dot-dashed),
(1, - 2) (dot-dot-dashed).

Figure- 4 Far-field spectral directivity for Mach number profile (70)

with a = 0.1,b = 6, M(0) = 1.5, and source position rs =

0.75to, xl _ = -0.hr0 for hard-wall duct (solid) and soft-wall duct

with ¢ = (1,-1) (dashed).

Figure- 5 Far-field spectral directivity for Mach number profile (70)

with a = 0.1,b = 6, M(0) = 1.5, and source position r, =

0.hro, xl _ = -0.hro for hard-wall duct (solid) and soft-wall duct

with ¢ = (1,-1) (dashed).

Figure - 6 Far-field spectral directivity for Mach number profile (70)

with a = 0.1,b = 6, M(0) = 0.9, and source position rs =

0.hro, xl _ = -2.0r0 for hard-wall duct (solid) and soft-wall duct

with _ = (1,-1) (dashed).


